Please check the examination details below before entering your candidate information							
Candidate surname	Other names						
Pearson Edexcel Inter							
Tuesday 13 June 20	23						
Morning (Time: 1 hour 10 minutes)	Paper reference 4SSO/1C						
Science (Single Av Chemistry PAPER: 1C	ward)						
You must have: Calculator, ruler	Total Marks						

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

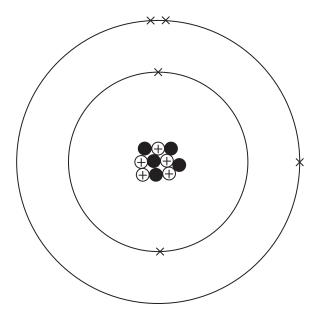
Turn over ▶

The Periodic Table of the Elements

_						
0 He 4 2 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	t full y
7	19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	we been repo
5	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticated
4	12 carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb	Elements with atomic numbers 112–116 have been reported but not full y authenticated
ဇ	11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	ents with ato
			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
			59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110
			59 Co cobalt 27	103 Rh rhodium 45	192 F indium 77	[268] Mt meitnerium 109
1 T hydrogen			56 iron 26	Ru ruthenium 44	190 Os osmium 76	(277] Hs hassium 108
	•		55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	mass ool umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 Vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 Ti tttanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
			45 Sc scandium 21	89 Y yttrium 39	139 La* Ianthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barum 56	[226] Ra radium 88
-	7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87
·						

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.


BLANK PAGE

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 This question is about the element boron, B.
 - (a) The diagram represents an atom of boron.

(i) Give the name of the central part of the atom.

(1)

(ii) Give the period number and group number of boron in the Periodic Table.

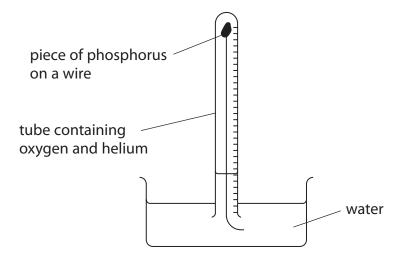
(2)

period number

group number

(iii) Give the number of electrons in a B³⁺ ion.

(1)


(b)) There are two common isotopes of boron.	
	¹⁰ ₅ B ¹¹ ₅ B	
	In terms of sub-atomic particles, give one similarity and one difference between these isotopes. similarity	veen (2)
	difference	

(Total for Question 1 = 6 marks)

2 A teacher wants to determine the percentage by volume of oxygen in a mixture of oxygen and helium.

Helium is an unreactive gas.

The teacher uses this apparatus and an excess of phosphorus.

The volume of gas in the tube decreases as the phosphorus reacts with oxygen.

The teacher measures the volume of gas in the tube at five-minute intervals.

The table shows the teacher's results.

Time in minutes	Volume of gas in cm ³
0	51.7
5	48.2
10	46.9
15	45.4
20	43.8
25	43.8
30	43.8

(a)	State how t	the results	show th	nat all the	oxvaen l	has reacted.
(u)	State HOW	tile results	JIIOVV CI	iac an tric	ONYGCIII	ias icacica.

(1)

(b) Use the results to calculate the percentage of oxygen by volume in the mixture of oxygen and helium.

Give your answer to 1 decimal place.

(3)

(c) An oxide of phosphorus has the formula P_4O_6 Calculate the relative formula mass (M_r) of P_4O_6

[for phosphorus, $A_r = 31$ for oxygen, $A_r = 16$]

(1)

$$M_r = \dots$$

(Total for Question 2 = 5 marks)

BLANK PAGE

- **3** This question is about mixtures and compounds.
 - (a) The table shows some methods used in the separation of mixtures.

Place one tick (\checkmark) in each row to show the best method for each separation.

(2)

	Method											
Separation	Crystallisation	Filtration	Fractional distillation	Simple distillation								
kerosene from crude oil												
water from potassium nitrate solution												

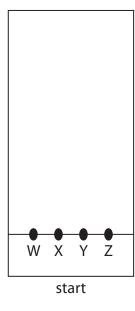
(b) Rock salt is a mixture of sand and salt.

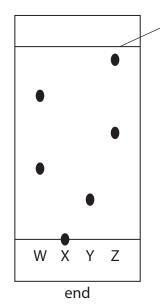
Salt is soluble in water.

Describe a method to separate the sand and the salt from a sample of rock salt.

(3)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|-------|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
|
 |
• |
| | | | | | | | | | | | |
|
 | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
|
 |




(3)

(c) A student uses paper chromatography to separate the dyes contained in food colourings.

The student places spots of four known food colourings, W, X, Y and Z, on the chromatography paper.

The diagram shows the chromatography paper at the start and at the end of the experiment.

solvent front

(i) Describe how the student should complete the experiment after placing the four spots on the paper.

Do	not	include any calculations.	(2)
(iii) Giv		reason why food colouring X does not move during the experiment.	
(III) GIV	, c u	cason why lood colouring x does not move during the experiment.	(1)
(d) A com	pou	nd has the formula Al ₂ (SO ₄) ₃	
(i) Ho	w m	any different elements are in Al ₂ (SO ₄) ₃ ?	
X	Α	3	(1)
\times	В	4	
\times	C	5	
\boxtimes	D	9	
(ii) Ho	w m	any atoms are in the formula Al ₂ (SO ₄) ₃ ?	(1)
\times	Α	3	(1)
\boxtimes	В	10	
X	c	17	
	D	21	
\boxtimes			

(a) (i) Complete the equation for the reaction between sodium and water by adding the state symbols.

(2)

 $2Na(....) + 2H_2O(...) \rightarrow 2NaOH(...) + H_2(...)$

(ii) Give two observations that would be made when a small piece of sodium is added to a large trough containing water.

(2)

2 .

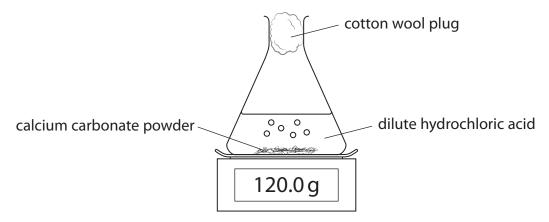
(iii) At the end of the reaction, a few drops of red litmus indicator are added to the trough.

Explain the final colour of the indicator.

(2)

(b) A small piece of a different Group 1 metal is added to water. The reaction is faster than the reaction of sodium with water, and a lilac flame is seen.

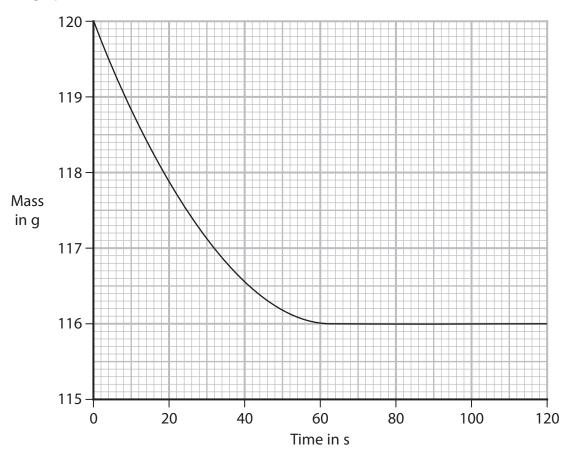
Identify this Group 1 metal.


(1)

(Total for Question 4 = 7 marks)

BLANK PAGE

5 A student uses this apparatus to investigate the rate of reaction between calcium carbonate powder and an excess of dilute hydrochloric acid.

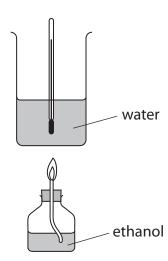


This is the equation for the reaction.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(q)$$

The student records the mass of the flask and its contents every 20 seconds for two minutes.

The graph shows the student's results.


(a) (i) Give a reason why using a cotton wool plug makes the results more accurate.

(1)

(ii) Give a reason why the reaction stops.	(1)
 (b) The student repeats the experiment using the same mass of calcium carbonate, but uses lumps instead of powder. The rate of reaction decreases. (i) Describe how the curve on the graph would change when lumps of calcium carbonate are used. 	(2)
(ii) Give a reason why the rate of reaction decreases when lumps of calcium carbonate are used.	(1)
(c) The mean rate of reaction can be determined using this formula. $mean \ rate \ of \ reaction = \frac{mass \ lost}{time \ taken \ to \ lose \ this \ mass}$ Determine the mean rate of reaction during the first 10 seconds. Give the unit. $mean \ rate \ of \ reaction = unit$	(3)
(Total for Question 5 = 8 m	

- **6** This question is about fuels.
 - (a) A scientist uses this apparatus to find the heat energy change when ethanol (C₂H₅OH) is burned.

(i) These are the scientist's results.

mass of water	150 g
temperature of water at the start	21.5°C
maximum temperature of water	62.7°C

Calculate the heat energy change, in joules.

[for water,
$$c = 4.2 \text{ J/g/}^{\circ}\text{C}$$
]

(3)

heat energy change =J

(ii) Give one reason why the apparatus produces an inaccurate value for the heat energy change.

(1)

(b)	Octane	(C_8H_{18})	is	another	fuel.
-----	--------	---------------	----	---------	-------

(i) Identify a toxic gas produced by the incomplete combustion of octane.

(1)

(ii) Identify a black solid produced by the incomplete combustion of octane.

(1)

(c) Petrol contains octane.

Describe one way that the combustion of petrol causes acid rain.

Do not refer to carbon dioxide in your answer.

(3)

- (d) When heated in the absence of air, octane can decompose to form ethene and one other product.
 - (i) Complete the equation for this decomposition of octane.

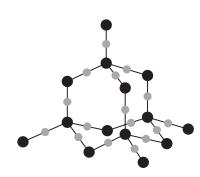
(1)

$$C_8H_{18} \rightarrow C_2H_4 + \dots$$

(ii) Poly(ethene) is produced from ethene.

Give the repeat unit of poly(ethene).

(1)


(Total for Question 6 = 11 marks)

- 7 Silicon chloride and silicon dioxide have different structures, but both contain covalent bonds.
 - (a) (i) State what is meant by the term **covalent bond**.

(2)

(ii) Diagram 1 shows the structure of silicon dioxide.

Key

- silicon atom
- oxygen atom

Diagram 1

Diagram 2 shows a molecule of silicon chloride.

Diagram 2

Explain why silicon dioxide has a higher melting point than silicon chloride.	
Refer to structure and bonding in your answer.	
	(5)

QUESTION 7 CONTINUES ON NEXT PAGE

- (b) Silicon chloride reacts with water, producing silicon dioxide and hydrogen chloride.
 - (i) Complete the chemical equation for the reaction between silicon chloride and water.

(1)

$$SiCl_4(l) + \dots H_2O(l) \rightarrow SiO_2(s) + \dots HCl(g)$$

(ii) Hydrogen chloride gas dissolves in water to produce an acidic solution.

Describe a test, other than using an indicator, to show that the solution is acidic.

(2)

(Total for Question 7 = 10 marks)

TOTAL FOR PAPER = 60 MARKS